FMS di- π^0 update Xiaoxuan Chu 03/04/21 #### A brief reminder $$x_1 = \frac{p_{T1} e^{y_1} + p_{T2} e^{y_2}}{\sqrt{s}}$$ $$x_2 = \frac{p_{T1} e^{-y_1} + p_{T2} e^{-y_1}}{\sqrt{S}}$$ FMS: 2.6< η <4.0 - Large cell detector: 2.6< η <3.3 - Small cell detector: $3.3 < \eta < 4.0$ 0.0 0.0 ×10⁻³ $\pi/2$ Area=0.00018±0.00005 $p_{T1} = 2.4-2.8 \text{ GeV} \\ p_{T2} = 2.0-2.4 \text{ GeV}$ Pedestal=0.00080±0.00008 $\pi/2$ Width=0.44±0.10 0.0 **π/2** #### **STAR Preliminary** pAu BBCE>36000 - Data - Fit #### $p_T \rightarrow x-Q^2$ phase space - Simulation studies for $di-\pi^0$ in pp collisions - x-Q² evolution on p_T - η dependence \rightarrow data ## Input x_1 and x_2 from simulation trigger π^0 : p_{τ_1} # Input x_1 Vs x_2 from simulation $trigger \pi^0: p_{T1}$ Input Q² from simulation ## x_1 dependence on η trigger π^0 : p_{T1} $-3.3 < \eta < 4.0$ $-2.6 < \eta < 4.0$ associated π^0 : p_{T2} ## x_2 dependence on η trigger π^0 : p_{T1} associated π^0 : p_{T2} - x_2 decreases by selecting more forward π^0 s - x₁ and x₂ are more separated by selecting more forward pi0s Q^2 dependence on η 10 - Require trigger and associated π^0 hit on the small cell detectors of FMS: $3.3 < \eta < 4.0$ - Q^2 decreases by selecting more forward $\pi^0 s$ When $\eta \uparrow$, x_2 and $Q^2 \downarrow$ Q^2 dependence on η ### η dependence in pAu data? Can we see more suppression at more forward directions? ### η dependence in pp data? ### η dependence in data #### At small p_T : - Trigger dependence trend: - o pp: Back-to-back di- π^0 yields \uparrow when $\eta \uparrow (1.8\sigma@ low p_T)$ - o pAu: Back-to-back di- π^0 yields \downarrow when $\eta \uparrow (2.6\sigma@ \text{ low p}_{\text{T}})$ ### Summary #### Based on the plot from Thomas Ullrich #### Summary: - Probing high $p_T \pi^0 \rightarrow low pT \pi^0$, large $x (Q^2) \rightarrow small x (Q^2)$ - Non saturation → Saturation region - Slight η dependence shows in the data: FMS rapidity is high itself. ## Back up ### x dependence on η trigger π^0 : p_{T1} associated p_{T2} - x₁ and x₂ are more separated by selecting more forward pi0s - x₁ increases and x₂ decreases by selecting more forward pi0s pp at low p_T : $(0.00608-0.00562)/sqrt(0.00014*0.00014+0.00022*0.00022)^{-1.8}$